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ABSTRACT: The corpuscle is a geometric structure formed by ten regular, but slightly deformable
triangles. It allows for building a variety of three-dimensional structures, including the Goldberg
icosahedron, infinite chains, closed rings consisting of 8, 12 or 16 subunits, and a cube-like
structure comprising 20 subunits. These shapes can be built as paper models, which allow for a
slight deformation of the triangles. In general, such deformations are necessary to obtain rings and
other closed structures. Some of the structures are flexible, i.e. their geometric shape can be varied
continuously with no or little distortion of the surface triangles. We distinguish between
mathematical flexibility (where we require exactly regular triangle faces) and approximate, physical
deformability (where edge lengths can be slightly distorted). Flexibility appears, for instance, in
corpuscle chains: movements of a single element lead to collective conformations change along the
chain, the so-called breathing. The resulting conformations of individual subunits repeat each other,
approximately, after three units. Owing to this approximate periodicity, rings built from 8 or 16
corpuscles are rigid, while the 12-ring can be deformed quite easily, which is confirmed by the
paper models. Three-dimensional corpuscle networks can be constructed by arranging regular or
truncated octahedra in periodic patterns and decorating them with corpuscle balls.

Keywords: Corpuscle, Goldberg icosahedron, regular triangle, multi-stable polyhedron, periodic
structure, flexible geometric body

1. INTRODUCTION All these structures are bounded by regular -

or possibly slightly distorted - triangles. In

Three of the five Platonic solids - the tetra-
hedron, the octahedron, and the icosahedron -
are bounded by regular triangles, but such
triangles can also form various other, less
symmetrical structures. A variety of poly-
hedra can be constructed from a simple
building block, the so-called corpuscle. Its
basic shape is a pentagonal double pyramid
(see Figure 1, left). By cutting the edges
between two of its five segments, we obtain
an open side (a “mouth”) that allows for plug-
ging in another corpuscle unit. This con-
struction can be further extended: corpuscles
with two mouths give rise to straight or ring-
shaped chains, while corpuscles with three
mouths allow for building branched networks.

this paper, we shall describe a number of such
structures: we start with the Goldberg icosa-
hedron, a structure formed by two connected
corpuscle subunits, and construct, eventually,
periodic networks of corpuscle balls, each
comprising twenty corpuscle subunits in a
symmetric arrangement.

Some of the structures can show collective
motions, which leave all edge lengths and the
shapes of all surface triangles unchanged. We
call such structures flexible. If motions require
a stretching of the edges, the structure is
called deformable. In both cases, the different
shapes of a structure are termed confor-
mations. Slight deformations may also be
needed to obtain closed, ring-like structures.
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Figure 1: Corpuscles and the connection between them. Left: a corpuscle in three possible
conformations (from left to right). In the closed conformation, the corpuscle forms a pentagonal
double pyramid (seen from top); by a cut between two segments, a mouth arises. It becomes wider
as the corpuscle's central axis is contracted. As the mouth reaches its maximal width, the axis
shrinks to a point and the corpuscle is flat. Right: the Goldberg icosahedron can be built by
connecting two open corpuscles mouth to mouth. Red and blue dots determine a unique orientation

for the connection (see text).

While mathematical proofs about the exis-
tence and flexibility of corpuscle structures
can be tough, some insights may be obtained
from paper models. If not stated otherwise,
we shall consider here corpuscles with de-
formable edges. Further information about
corpuscle structures can be found at the web
site www.korpuskel.de.

2. CORPUSCLES AND CONNECTIONS
BETWEEN THEM

2.1 The corpuscle

The corpuscle in its basic form consists of ten
regular triangles in the following arrange-
ment: five triangles form a pentagonal pyra-
mid. The other five yield another pyramid and
both pyramids are joined bottom to bottom. A
face on top and its counterpart on the bottom
form a segment. The edges between triangles
are thought to be flexible, so the angle
between adjacent triangles can change. As
long as all ten triangles are connected, the
overall structure is rigid. However, if we cut
the corpuscle along the edges between two of
the segments, a mouth appears and the entire
structure becomes flexible: we can deform it
from the original double pyramid down to a
double layered, flat hexagon in which one of
the triangles is missing (see Figure 1, left).
These different conformations can be de-
scribed by a single conformation parameter,
the thickness b (length of the corpuscle's
central axis), which then determines the

mouth width a (compare Fig. 5). If we
consider triangles of edge length 1, simple
trigonometry shows that a = 2 r sin( 1 -5

arcsin(1/(2 r))), where r=y1—(b/2) is the
radius of the circle through the six vertices in
the corpuscle's central plane and arcsin is the
inverse of the sine function. The value of b
can vary between
b=2+1—(2sin(1/5)) 2~1.0515

(thick conformation) and »=0 (flat conforma-
tion); at the same time, a varies between a=0
and a=1.

Figure 2: Deformation of the Goldberg icosa-
hedron (Fig 1, right). Left: in one extreme po-
sition: the right unit is completely flat. Centre:
in the neutral position, both units have the
same shape. Right: in the second extreme
position, the left unit is completely flat.

2.2 The Goldberg icosahedron

If we connect two corpuscles mouth to mouth,
we obtain the Goldberg icosahedron [1]
shown in Fig. 1, right. Just like the Platonic
icosahedron, it is bounded by twenty regular
triangles. The central axis of one corpuscle
connects the tips of the other unit that arise
from the cut - and vice versa.
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(b)

Figure 3: Corpuscles as building blocks (a) Top left: basic corpuscle in flat conformation, seen from
top (see Fig. 1). Bottom left: to build chains, a second mouth is needed. The new mouth replaces
one of the existing segments. Our short notation works as follows: we look from the top (red dot in
the centre), start at the thick line, and describe the groups of connected segments in clockwise
direction order. In this case, we obtain two segments, a mouth, and two more segments, or briefly,
(2,2). Right: all five corpuscle types with four segments and two mouths and the branch point type
(1,1,1) with three segments and three mouths. Corpuscles are attached to an existing chain with
their left mouth (incoming arrow). Outgoing arrows show directions in which the chain can be
extended. (b) Corpuscle chains. Top: straight type (2,2) units form a straight chain consisting of
alternating vertical and horizontal units. Bottom: type (3,1) units give rise to a helical chain.

The conformations of the two units are
coupled: if one unit has a thick shape (long
central axis, narrow mouth), the other one is
flat (short axis, wide mouth).

A Goldberg icosahedron with regular triangle
faces can display three distinct conformations
[1]: in the neutral conformation, both cor-
puscle units show the same shape. Besides
this, there are two asymmetrical confor-
mations in which one of the units is almost
flat, while the other one is thick. A continuous
movement between these conformations
requires an elastic deformation of the edge
lengths. In a simple mechanical model, we
can represent the edges by elastic springs; any
deviation from the standard edge length 1
results in a force. In this model, only the three
above-mentioned conformations display a
mechanic equilibrium in which no forces act
on the structure. Therefore, Goldberg called
his icosahedron a multi-stable polyhedron.
The corpuscle's volume depends on its
conformation and vanishes if it is completely
flattened. As a consequence, the Goldberg
icosahedron changes its volume during its

motion. In paper models, this can be expe-
rienced as an audible breathing as air is blown
in and out.

3. CORPUSCLES WITH TWO MOUTHS
CAN FORM CHAIN STRUCTURES

3.1 Corpuscle chains

If we remove one more segment from the
basic corpuscle, we obtain a new type of
corpuscle with four segments and two
mouths, which can be linked to two other
corpuscles. It consists of two parts that are
only connected at the top and the bottom
vertex. Depending on which segment has
been removed, there are five corpuscle types,
which give rise to different link angles (see
Fig. 3). There are also corpuscle types with
three or more mouths. For connecting the
corpuscle units, we fix a specific orientation:
in each unit, we distinguish between a red
"top" vertex and a blue "bottom" vertex.
Other vertices around a mouth are marked by
colours as well (see Figures 2 and 3), and
newly attached units must be oriented such
that identical colours match.
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Figure 4: An open corpuscle chain can change its conformation. Top left: corpuscle chain with
alternating purple, orange, and blue colours. Top right: as one orange unit is pushed into a flat
shape, the other orange units also become rather flat, while nearby blue and orange units become
thick. The conformations of individual units are approximately periodic with period 3. Bottom: the

same, for purple and blue units.

With this convention, we can describe a chain
by the sequence of unit types. In the
following, we shall only consider structures
consisting of straight units (type (2,2)),
weakly curved units (types (1,3) and (3,1))
and weakly curved branch points (type
(1,1,1)); the notation is explained in Fig. 3.
Corpuscles with two mouths can be linked to
a straight chain (see Figure 3b, top): we start
with an open type (2,2) unit and iteratively
add more units on the right. We can also
construct curved chains: in this case, new
units are not added along the previous
direction, but at an angle. Simple helices
arise, for instance, from repetition of type
(3,1) units (see Figure 3b, bottom).

3.2 Collective motion of corpuscle chains

Corpuscle chains can show collective confor-
mation changes: as in the Goldberg icosa-
hedron, the motion in one unit affects the
motion of its neighbours. In paper models, the
resulting collective motion leads to similar
conformations three units to the left and to the
right: as one corpuscle is becoming flat, the
two preceding and the two subsequent units in
the chain simultaneously become thick, while

the third, the sixth and so forth, to both sides,
become flat. Hence, the conformations along
the chain are approximately periodic with
period three (see Figure 4), in contrast to the
chain itself, which at first sight would suggest
a period of 2 (alternating vertical and
horizontal units).

Figure 5: Conformation parameters for indi-
vidual corpuscle units. Left: in a corpuscle
with two mouths, the conformation can be
characterised by the width a of the first mouth
and the thickness b. If both values are fixed,
the width ¢ of the second mouth is deter-
mined by a function ¢ = fla,b). Right: in a
three-mouth corpuscle, a, b, and ¢ can be
chosen, and d is determined by a function
d=g(a,b,c). If this corpuscle is attached to an
existing chain, a and b will be determined by
the previous unit, but c is a free parameter.
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Figure 6: Deformation of the 12-ring. If one of the units is pressed, the entire ring shows a collec-
tive conformation change (requiring only little deformation of the triangles). Units are marked by
alternating purple, orange, and blue colour as in Figure 4. In the collective motion, units of the same
colour (four units per ring) display synchronous behaviour. The pictures show (from left to right)
the neutral conformation, orange units flattened, purple units flattened, and blue units flattened.
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Figure 7: Conformation parameters in the corpuscle chain (see Fig. 4). Each unit is described by its
two conformation parameters a; and b; (compare Fig. 5). Top left: in the a-b-diagram, units are
shown as dots; lines connect neighbouring units; for the colours, compare Fig. 4. The parameters a;,
and b, of the first unit are given(purple dot at about (0.8, 0.95), leftmost unit in the chain): the
following conformations resemble each other every three units. Exact periodicity would mean that
points of the same colour coincide. Top right: the same plot, with more units shown and similar
units connected by lines. All conformations lie on a closed curve in parameter space. Bottom left:
the same kind of curve, shown for different choices of the initial parameters a; and b;. Bottom right:

conformations with period 3 in the 12-ring (compare Fig. 6).
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The approximate periodicity can be described
in mathematical terms. The first (leftmost)
corpuscle has two mouths; we can fix its
conformation by prescribing two parameters,
for instance, the width a of the left mouth and
the thickness b (see Figure 5). These confor-
mation parameters directly determine the
width ¢ of the right mouth. For a corpuscle
with two mouths and four segments, the
values of ¢ can be computed by

¢ = fla,b) =2 r(b) sin( 1t - arcsin(a/(2 r(b))) -
4 arcsin(1/(2 r(b))))

with the corpuscle radius 7 (b)=y1—(b/2)’.
In the neutral conformation, a, b, and ¢ will
show the same value, so we obtain a~0.7653
(the solution of a=f(a,a)). If we attach a
second corpuscle (called “unit 27), its
conformation parameters are determined by
the parameters of the first corpuscle (“‘unit
17): the left mouth width a, of unit 2 equals
the thickness b; of unit 1, while the thickness
b, of unit 2 equals the right mouth width ¢, of
unit 1. The right mouth width ¢,, however, is
determined by the function f.

Altogether, the conformation of the first unit
- the starting point of the chain - determines
the conformations of all other units, so the
conformation of the entire chain is determined
by two initial conformation parameters a; and
b;. Thus, each unit contributes a new para-
meter, which can be computed from the two
previous parameters - just like in the
Fibonacci sequence.

In the neutral conformation, all units have the
same shape and the chain can be continued
indefinitely (point in the centre of Fig. 7,
bottom left). For the choice of initial confor-
mation parameters shown in Fig. 7, top, the
parameter pairs approximately repeat them-
selves after three units, forming a closed
curve in conformation parameter space.
Deviations from the neutral starting point lead
to approximately elliptic curves that are
deflected by the boundary of the admissible
parameter region (a<1,b<b, ~1.0515).
The different curves can be characterised by a
single parameter that describes the deviation
from the neutral conformation.
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The numerical calculations suggest that
chains built from a wide range of initial con-
formations can be indefinitely extended
without deformation. This implies, in turn,
that infinite chains with exact regular triangle
faces are flexible.

3.3 Corpuscle rings

If appropriate sequences of link angles are
chosen, the two open ends of a chain come in
close vicinity; by slightly deforming the
edges, we can join the open ends and obtain a
closed ring. In doing so, we distribute the
mismatch between the open ends over all
units of the chain. This resembles the
construction of the tempered scale in music,
where the Pythagorean comma (a mismatch
between similar tones) is equally distributed
over all intervals in the scale.

Figure 8 shows three possible rings consisting
of eight, twelve, and sixteen corpuscle units,
respectively. The 8-ring in neutral confor-
mation (conformation parameters a=»b for all
units) closes with high numerical precision.
All three rings emerge from weakly curved
corpuscles of types (1,3) and (3,1), each
consisting of a larger part (three segments,
called bridge), a smaller part (a single
segment), and two mouths in between.
Bridges always form the outer side of a curve
and are therefore exposed at the exterior side
of the rings, while the single segments are
located on the inner side.

Can these ring structures also show collective
motions? The possible conformation patterns
along a chain do not depend on whether the
chain is straight or forms a ring. For collective
motion in a ring, however, the conformations
of the first and the last unit have to be
consistent - at least to some approximation. In
the 8-ring and 16-ring, the number of units is
not a multiple of three, so circular three-phase
pulses will not match at the chain ends, so the
closed rings are rigid. The 12-ring, in con-
trast, is easily deformable and shows periodic
conformation patterns with period 3, as we
see in Figure 6.
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Figure 8: Rings and ball built from corpuscle units. (a) The 8-ring (top and front view) consists of
64 regular triangles, 96 edges and 32 vertices. The inner part contains two hollow squares that are
rotated against each other by 45° and connected by a stripe of eight triangles. The outer part is
formed by four bridges extending towards the top and four bridges extending towards the bottom.
The 8-ring is related to a square (bottom). Each vertex and each edge of the square corresponds to
one of the corpuscle units. (b) The 12-ring contains 96 regular triangles, 144 edges and 48 vertices.
Its six innermost edges surround a cube. The exterior is formed by three bridges extending towards
the top, three bridges towards the bottom, and six bridges towards the outside; they correspond to
six vertices and six edges of a cube (bottom). (c) The 16-ring contains 128 regular triangles, 192
edges and 64 vertices. Its eight innermost edges encircle a cube (bottom), corresponding to the eight
vertices and eight of its edges. (d) The corpuscle ball. In the scheme on top, the quadratic openings
are shaded in black. The corpuscle ball has cubic symmetry and contains 144 regular triangles, 216
edges and 64 vertices.
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Figure 9: The corpuscle ball (left) can be represented by a truncated octahedron (centre) or by a
regular octahedron (right). Left: corpuscle ball seen from its three-fold (top) and four-fold (bottom)
symmetry axis. To show the correspondence between corpuscle ball and the octahedra, the
quadratic holes are shown here as purple faces. Centre: truncated octahedron. Its six square faces
(purple) correspond exactly to the quadratic holes of the corpuscle ball. The hexagon in the
truncated ocathedron (TO) corresponds to the flat branch point corpuscle that allows for interlinking
two corpuscle balls. Right: by completing a TO with little pyramids, we obtain a regular
octahedron, which then also corresponds to a corpuscle ball.

4. CORPUSCLE NETWORKS

Corpuscles of type (1,1,1) can be linked to
three neighbours and serve as branch points
for building networks. An example is the
corpuscle ball, which consists of twenty
tightly interconnected units (Fig. 8, left).
Corpuscle balls can be interlinked to form
three-dimensional periodic patterns.

4.1 The corpuscle ball

In a cube, each vertex connects three edges,
while each edge connects two vertices. To
obtain a corpuscle ball with cubic symmetry
(see Fig. 9), we decorate each vertex of a cube
with a branch point unit (type (1,1,1)) and
each edge with a bridge unit (type (1,3) or
(3,1)); the units fit into each other with little
deformation. The corpuscle ball is not flexible
since it contains the 8-ring, which by itself is
already rigid.

Corpuscle balls can be interlinked in two
alternative ways, both along the three-fold

axis. Consider the three-fold symmetry centre
shown in Figure 9, top left: it consists of a
relatively flat branch unit (seen from top) and
the three adjacent bridges. Another corpuscle
ball can be attached to this vertex such that
these four units are shared by both balls. We
shall call this configuration of two balls the
even connection. Alternatively, we can start
with an even connection and then rotate one
of the balls by 60 degrees: in this arrange-
ment, each ball retains its three bridges, and
all six bridges meet edge to edge. The branch
point corpuscle is completely covered by the
bridges and can be disregarded. This confi-
guration is called the twisted connection (see
Fig. 10). Hence in both pairwise connections,
corpuscles are linked by a common branch
point unit (in the even case) or meet edge to
edge (in the twisted case). The connection of
more than two corpuscle balls in periodic
patterns can lead to self-penetration, that is,
intersection of triangle faces.



Figure 10: Twisted connection of corpuscle
balls. View along the three-fold axis (left) and
from the side (right). The twisted connection
corresponds to two truncated octahedra joined
to each other in the twisted arrangement.

4.2 Representing the corpuscle ball by a
truncated or regular octahedron

Complex structures consisting of many cor-
puscle balls are hard to visualise; for sim-
plifying the following constructions, we re-
present the corpuscle ball by simple proxy
solids, the truncated octahedron (TO) and the
regular octahedron (RO) shown in Figure 9.
The TO is an Archimedean solid bounded by
six squares and eight regular hexagons; it has
cubic symmetry and can be obtained by
cutting off the corners of a Platonic octa-
hedron. By adding small square pyramids to
the square faces, the regular octahedron can
be restored. We can arrange our proxies in
periodic patterns and then decorate (i.e. re-
place) them again with corpuscle balls.

Figure 11: Truncated octahedra can be joined
in two different manners, the even arrange-
ment (left) and the twisted arrangement
(right).

If two corpuscle balls are connected, the
corresponding TO are joined with each other
at their hexagonal faces (Fig. 11). The two
possible connections between corpuscle balls
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(even and twisted) correspond to two different
ways to join the hexagons. As shown in
Figure 11, the hexagon surface joining the
two TO 1is surrounded by squares and
hexagons. In the even arrangement, squares
from the one component meet squares from
the other component; so do the hexagons. In
the twisted arrangement, on the other hand,
squares and hexagons have to sit next to each
other. We can switch between the two
arrangements by turning one of the TO by
60°. As shown in Figure 9, right, the
corpuscle ball can also be represented by a
regular octahedron. If two octahedra, sitting
face to face, are decorated with corpuscle
balls, we obtain an even connection.

4.3 Periodic corpuscle structures

Our two proxy solids, the TO and the RO, can
be arranged in periodic patterns. Figure 12
illustrates a periodic, space-filling arrange-
ment of truncated octahedra. If we decorate
them with corpuscle balls, the balls will be
linked by twisted connections.

Figure 12: Periodic arrangement of truncated
octahedra (TO). Truncated octahedra can be
arranged in a three-dimensional periodic,
space-filling pattern. If the TO are decorated
with corpuscle balls, the twisted arrangement
between the TO (compare Fig. 11, right) cor-
responds to twisted connections between the
corpuscle balls (see Fig. 10).

Figure 13, on the other hand, shows a non-
space-filling arrangement of octahedra. All of
them are joined face to face - corresponding
to even connections between corpuscle balls.
This structure can be repeated in a cubic
lattice.
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Figure 13: Periodic pattern based on regular octahedra (RO). The structure shown can be decorated
with corpuscle balls forming even connections. Left: a regular octahedron is surrounded by eight
octahedra attached to its faces. When this structure is inscribed into a cube, it can be repeated
periodically in a cubic lattice. The cube vertices will be surrounded by octahedral holes: by filling
these holes again with octahedra, we obtain a periodic RO structure with cubic symmetry. It
consists of intertwined octahedra chains (“filaments”) that point along four directions in space. The
remaining empty spaces form a periodic corpuscle network made of four-fold symmetric corpuscles
of type (1,1,1,1) (not shown). Centre: the periodic RO structure contains rings of 12 octahedra.
Each ring contains six overlapping filament pieces (length 3, two pieces for each of three filament
directions, ring axis parallel to the fourth filament direction). Right: by adding more octahedra to
the ring, we obtain a structure resembling a parallelepiped. Each edge is formed by a filament piece
of length 3.

Figure 14: The two arrangements of octahedra: (a) Even arrangement. Left column: even arrange-
ment of three TO in a straight line, with a weak angle, and with a strong angle. Centre column:
even arragement of truncated (top) and regular (bottom) octahedra. Right column: building blocks
for octahedra networks (see Fig. 13). (b) Twisted arrangement of truncated octahedra. Left column:
twisted arrangement of three TO in a straight line, with a weak angle, and with a strong angle.
Centre column: twisted arragement of truncated (top) and regular (bottom) octahedra. Right
column: periodic space-filling arrangement of truncated octahedra (Fig. 12).
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The two arrangements - regular octahedra
with even connections and truncated octa-
hedra with twisted connections, are shown
again in Figure 14. In both cases, the resulting
periodic structures can contain self-intersec-
tions between some of the corpuscle units.

5. CONCLUSIONS

The corpuscle is a simple basic shape con-
sisting of regular or almost regular triangles.
It allows to build a variety of three-dimen-
sional structures, including the Goldberg
icosahedron, chains, rings, and the corpuscle
ball with cubic symmetry. Some of the
structures are flexible or easily deformable.
With a convention about the relative orien-
tation corpuscle units, complicated chain
structures can be described by a numerical
short notation. Periodic three-dimensional
networks can be formed by decorating regular
or truncated octahedra, with corpuscle balls.
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