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deformation is needed to obtain a closed ring 

or  to  deform  it.  Previous  calculations  have 

confirmed  that  open-ended chains  can show 

flexible  collective  deformations,  which  are 

approximately periodic with a period of about 

three [2]. But it is still  unclear which of the 

corpuscle structures can be build exactly (that 

is,  without  deforming the  edges)  and  which 

would be the preferred conformations for the 

others. To test this, we now studied corpuscle 

structures  of  different  size,  including  rings 

consisting of 6, 8, 10, 12, and 60 segments, 

and  simulated  their  stable  conformation  and 

possible deformations by a numerical model. 

In the model,  edges  are  modelled  by elastic 

springs  following  Hooke's  law.  We  studied 

how much the edge have to be deformed to 

build  these  structures,  whether  their  stable 

conformations show any symmetry breaking, 

and what are their softest deformation modes. 

2. CORPUSCLE STRUCTURES

Corpuscles  are  composed  of  segments (two 

triangle  faces  connected  by a  flexible  edge) 

and mouths (segments in which the faces have 

been omitted and where the mouth of another 

corpuscle element fits in), all arranged around 

a central axis [2]. The elements can be deno-

ted by numbers of connected segments:  in a 

(2,2) corpuscle element, for instance, there are 

two  pairs  of  segments,  separated  by  two 

mouths.  A  (1,3)  element  is  composed  of  a 

single segment, a mouth, three segments, and 

another  mouth.  Other  types  of  elements  are 

named  accordingly.  Corpuscles  can  be  con-

nected to build a variety of structures. Apart 

from the ones presented in  [2],  we consider 

here  a  44-hedral  cluster,  a  cluster  of  four 

elements, and new rings containing 6, 12, or 

60  elements.  All  structures  are  shown  in 

Figure 1 (as paper models) and in Figures 3a, 

3b,  3c,  and 3d (as  computer  models).  Their 

topologies are listed in Table 1.

3. ELASTIC SPRING MODEL: STABLE 

CONFORMATIONS AND SOFT DEFOR-

MATION MODES

Together with the Goldberg icosahedron, our 

list comprises corpuscle clusters and rings of 

2, 4, 6, 8, 12, 16, and 60 elements, as well as 

the cube-like corpuscle ball (20 elements) and 

a 44-hedral cluster.  Most  of these structures 

require elastic edges, which can change their 

length. We have studied their  conformations 

by  a  numerical  model  in  which  edges  are 

elastic springs following Hooke’s law.  Each 

conformation is scored by an energy resulting 

from stretching and compression of the edges. 

For  each  structure,  we  have  computed  a 

conformation  of  minimal  energy  (“stable 

conformation”) and determined its symmetry. 

Next,  we  determined  possible  low-energy 

deformations around this stable conformation 

from the eigenvectors of the energy function’s 

Hessian matrix. 

For the calculations,  a corpuscle structure is 

represented by a set of nodes (with indices α 

and coordinate vectors (x1α , x2α , x3α)
T) and by 

a  set  of  edges  given  as  ordered  node pairs. 

The total  energy reads  E =  1/2  Σ(α,β) (Dαβ – 

Lαβ)
2,  where  Dαβ is  the  Euclidean  distance 

between nodes α and β and Lαβ is the nominal 

edge  length  between  them.  Usually,  we 

consider a  standard edge length  Lαβ  =1.  The 

sum runs over all pairs (α, β) of nodes joined 

by an edge and satisfying α < β.

To obtain a closed ring, we start from an open 

chain, determine nodes at the open ends to be 

matched, and deform the structure such as to 

bring these nodes in close vicinity. Then, we 

collapse the matched nodes and numerically 

relax  the structure further  to  obtain a  stable 

conformation,  that  is,  a  local  energy  mini-

mum. If all edge lengths in this conformation 

are equal to 1 within numerical accuracy, the 

structure  can  be  built  exactly  without  edge 

deformation.
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Goldberg icosahedron Corpuscle 4-cluster Corpuscle 44-hedron

Corpuscle 6-ring Corpuscle 8-ring Corpuscle 10-ring

2-fold symmetric 12-ring 3-fold symmetric 12-ring 6-fold symmetric 12-ring

Corpuscle 60-ring
Corpuscle 16-ring Corpuscle ball 

Figure 1: Corpuscle structures shown as paper models.  Details on the topologies are listed in 

Table 1.
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Name Elements Nodes Edges Triangles Rotation 

symmetry

Mean edge 

energy

Symmetry 

broken

Exact

Goldberg 

icosahedron

2 12 30 20 2 appr. 0 x

Corpuscle 4-cluster 4 18 48 32 2 appr. 0 x

44-hedral cluster 6 24 66 44 2,3 appr. 0 x

Corpuscle 6-ring 6 25 72 48 3 appr. 0 x

Corpuscle 8-ring 8 32 96 64 4 appr. 0 x

Corpuscle 10-ring 10 40 120 80 5 8.5 * 10-5 x

Corpuscle 

12-ring (2-fold)

12 48 144 96 2 6.4 * 10-5

Corpuscle 

12-ring (3-fold)

12 48 144 96 3 3.9 * 10-5

Corpuscle 

12-ring (6-fold)

12 48 144 96 6 7.6 * 10-8 x

Corpuscle 60-ring 60 240 720 480 10 3.1 * 10-8

Corpuscle 16-ring 16 56 188 128 2 3.3 * 10-5

Corpuscle ball 20 64 216 144 4 2.4 * 10-5

Table 1: Corpuscle structures studied. For the geometric shapes, compare Figures 1 and 3a-d. 

The  first  columns  indicate  the  numbers  of  elements,  nodes,  edges,  and  faces.  The  first  three 

structures (“clusters”) satisfy Euler's formula (#nodes + #faces = #edges + 2) for convex polyhedra, 

while all  others, due to their differing topologies,  have Euler's characteristics different from 2. 

“Rotation symmetry” refers to an idealized geometric shape of maximal symmetry, which may show 

unequal edge lengths and need not represent a stable conformation in the elastic spring model. The 

last three columns summarize results from the numerical calculations. Average edge energies (mean 

square deviation from the nominal edge length of 1) were computed after relaxing the structure to a 

stable  conformation.  Values  below 10-9 are  labeled  as  “appr.  0”;  larger  values  suggest  that  the 

structure cannot be formed with equal edges. Structures are labeled as “broken symmetry” if the 

stable conformation breaks the symmetry of the graph (as determined by visual inspection and by 

multiplicities  of edge lengths).  A structure is  labeled “exact” if  there exists  a symmetric  stable 

conformation with equal edge lengths (again, within numerical accuracy). 
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Next, we studied the soft deformation modes. 

Based  on  the  stable  conformation  obtained, 

we computed the Hessian of the energy and 

determined its  eigenvalues and eigenvectors. 

For  these  calculations,  we  considered  two 

alternative starting points: (i) we assumed that 

all  edges  have  a  nominal  length;  (ii)  we 

assumed  that  each  edge's  nominal  length  is 

the one found in the stable conformation. The 

results were similar, but the second alternative 

excludes,  by construction,  the  possibility  of 

negative  eigenvalues  due  to  numerical 

inaccuracy. In the following, we shall refer to 

the second possibility. In any case, translation 

and rotation of the entire structure are energy-

neutral  and  lead  to  six  zero  eigenvalues, 

which we could recover with good numerical 

accuracy.  The  next  smallest  eigenvalues  are 

associated with soft elastic deformations.

4.  DEFORMATION  AND  SYMMETRY 

OBSERVED IN CLUSTERS AND RINGS

Paper   models  and  simulation  results  are 

shown in Figures 2a-e and 3a-d, respectively. 

The  numerical  results  are  listed  in  the  last 

three columns of Table 1 and soft deformation 

modes  are  shown  at  www.korpuskel.de as 

movies. In this section,  we shall describe the 

structures' behavior in more detail.

4.1  Corpuscle Clusters

The  first  three  structures  (called  “clusters”) 

can be built  with  rigid edges.  As shown by 

Goldberg [1],  the  Goldberg icosahedron has 

three  conformations  in  which  triangles  stay 

regular. A paper  model  moves  continuously 

and  with  little  effort  between  these  confor-

mations.  This  “breathing”  movement  also 

appears as the softest deformation mode in the 

calculations. 

The  four-corpuscle-cluster consists  of  four 

units,  each  with  four  segments  and  one 

mouth. They are assembled in pairs around a 

non-regular  tetrahedron,  just  like  the 

Goldberg  icosahedron.  According  to  the 

simulations, its softest deformation mode also 

resembles  the  breathing  of  the  Goldberg 

icosahedron, with the two halves opening and 

closing in opposite phase. 

The  44-hedron contains  six  corpuscles  with 

three  segments  and  one  mouth  each.  These 

bridges lean over the surface of a core solid, 

which  resembles  a  regular  icosahedron.  In 

fact,  it  represents  one  phase  of  B.  Fuller's 

Jitterbug, a continuous movement between a 

regular  octahedron,  an  icosahedron,  and  a 

cuboctahedron. The softest deformation mode 

of  the  44-hedron  consists  of  an  extension 

along  one  of  the  main  axes.  Due  to  its 

symmetry,  this  mode  can  appear  in  three 

different directions.

4.2  Corpuscle rings

Our present selection focuses on rings that can 

be  closed  with  little  distortion,  show 

symmetry, and are possibly deformable. 

The 6-ring emerges from alternating (2.2) and 

(0,4)  units.  The  (2,2)  units  share  the  center 

point  of  the  ring  as  a  vertex.  In  the  paper 

model, the structure is flexible: its symmetric 

shape seems to  be unstable and flips  into  a 

conformation  in which one of the (2,2) unit 

diminishes its volume. So does the (0,4) unit 

on  the  opposite  side,  while  the  other  four 

elements  simultaneously  increase  their 

volume. The vertical (2,2) unit keeps some of 

its volume when the co-acting horizontal (0,4) 

unit is already flat. This can happen in three 

different  orientations.  This  behavior  is  also 

reflected in the computer model: in the stable 

conformation, one of the vertical elements is 

punched  in  and  completely  flat,  which 

decreases the overall tension to a very small 

value and obviously breaks the 3-fold rotation 

symmetry. 
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Figure 2a: Deformation of the Goldberg icosahedron paper model.  Shown are the symmetric 

conformation (left) and the two extreme deformations (right). 

Figure 2b: Deformations of the 6-ring paper model. Shown are the symmetric conformation and 

three extreme deformations, which have the same shape and differ only in their orientation.

Figure  2c:  Deformations  of  the  2-fold  symmetric  12-ring  paper  model.  Shown  are  the 

symmetric conformation and the three extreme deformations. There is one outstanding deformed 

conformation (mid-right) in which all (2,2) type units are flat. The other two extreme conformations 

(mid-left; right) are mirror images of each other. 

Figure 2d: Deformations of the 6-fold symmetric 12-ring paper model.  Shown are the three 

extremes  of  deformation  and  the  symmetric  conformation.  The  three  deformations  can  be 

transferred into each other by rotating the model.
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Figure 2e: Deformations of the 3-fold symmetric 12-ring paper model.  Shown are  the three 

extreme deformations and the symmetric conformation (left). Units co-acting in the same set are 

marked by the same color. By switching colors, the three deformations can be transferred into each 

other by rotating the model.

The  8-ring consists  of  alternating  (1,3)  and 

(3,1) type elements and is the narrowest ring 

that can be built from such units. The empty 

area  in  its  center  forms  a  square  antiprism. 

The 8-ring can be closed without deformation 

and shows hardly any flexibility in the paper 

models.  The  10-ring consists  of  alternating 

elements  of type (2,2) and (1,3).  Five of its 

elements  form a central  pentagon.  Its  stable 

form is under tension and hardly flexible.

Our three 12-rings have the same number of 

nodes, edges, and triangles, but differ in their 

chain sequences and show 2-fold, 3-fold, and 

6-fold  symmetry,  respectively.  In  the  2-fold 

symmetric 12-ring, four units of type (2,2) are 

assembled  with  four  units  of  type (1,3)  and 

four units  of type (3,1). Deformation of this 

ring creates  extreme shapes  (see Figure 2c), 

since the co-acting sets of corpuscles do not 

gather units of the same type. One set consists 

of four units of type (2,2), and a flattening of 

this set causes a contraction of the ring's entire 

shape. The second set consist of units of type 

(1,3), and the third set of co-acting subunits 

are type (3,1). A flattening of these sets causes 

a twist in the ring's shape. 

The  3-fold  symmetric  12-ring,  in  contrast, 

assembles (1,3) and (3,1) units in alternating 

order. The inmost edges of six elements form 

a band meandering up and down three times. 

This band can be seen as part of a cube in the 

ring's center space. The structure closes with 

little  tension  and  can  be  easily  deformed, 

moving  from  the  equilibrium  into  three 

extreme conformations. In each of them, two 

(1,3) and two (3,1) units become flat. 

The  6-fold  symmetric  12-ring is  built  from 

alternating  elements  of  type  (2,2)  and  (1,3) 

and surrounds a hexagon. In the paper model, 

the ring is  harder to  deform than the 3-fold 

12-ring. On the way from its symmetric shape 

to one of the three extreme positions, four of 

the elements become flat: two (2,2) units and 

two (1,3) units. After a first strong effort, the 

structure seems to reach a more relaxed shape. 

In  the  calculation,  this  ring  undergoes  a 

spontaneous symmetry breaking that leads to 

to  the  same  shape:  four  segments,  in  a 

distance of three segments each, become very 

thin and partially punched in. 

The 60-ring is formed by a sequence of (1,3) 

type and (3,1) type units alternating after each 

third element. During the relaxation, its edge 

tension  achieves  a  very  small  value.  We 

therefore expect that the 60-ring can be built 

with edge lengths very close to, but not equal 

to one. From the same sequence, we can also 

build  rings  of  other  size,  but  it  takes  much 

more tension to close them. The 18-ring, for 

instance (not presented here), shows a similar 

spontaneous  deformation  as  the  6-fold 

symmetric 12-ring. 
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Goldberg icosahedron Corpuscle 4-cluster Corpuscle 44-hedron

Figure 3a: Corpuscle clusters studied. Details on their topologies are given in Table 1. All edges 

have their natural length.

Corpuscle 6-ring Corpuscle 8-ring Corpuscle 10-ring

Figure 3b: Three of the corpuscle rings studied. Details on their topologies are given in Table 1. 

On bottom, edge tension is marked by colors (red: compression; blue: extension).
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Corpuscle 12-ring (2-fold) Corpuscle 12-ring (3-fold) Corpuscle 12-ring (6-fold)

Figure 3c:  The three  12-rings  studied. Details  on  their  topologies  are  given  in  Table  1.  On 

bottom, edge tension is marked by colors (red: compression; blue: extension).

Corpuscle 60-ring Corpuscle 16-ring Corpuscle ball 

Figure 13: Two rings and the corpuscle ball. Details on their topologies are given in Table 1. On 

bottom, edge tension is marked by colors (red: compression; blue: extension).
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The  16-ring emerges  from elements  of  type 

(1,3) and (3,1), being repeated after the first – 

first – second... element. This ring surrounds a 

cube in its central area, fitting along eight of 

the cube's edges and covering all its vertices. 

By adding four bridges, it can be completed to 

the corpuscle ball, which has cubic symmetry 

[2].  Both  structures  show  hardly  any 

flexibility. 

5. CONCLUSIONS

Our  computer  experiments  suggest  that  the 

three  clusters  (Goldberg  icosahedron,  4-

cluster, and 44-hedron) can be built with rigid 

edges, while the rings can only be closed by 

applying some tension - the 8-ring being the 

only exception. If the overall tension is high, 

it  need  not  be  distributed  evenly  over  the 

entire  structure,  but  some  of  the  corpuscle 

elements  may  become  flattened  or  even 

punched in, which spontaneously breaks  the 

overall symmetry. We have seen examples of 

this  in the 6-ring, in the 12-ring with 6-fold 

symmetry,  and  also  in  rings  with  much 

stronger tension (18-ring and 24-ring), which 

were  not  presented  here.  Although  the 

selection of structures studied here is far from 

being comprehensive, the results so far agree 

with  our  expectation  that  deformations  can 

arise more easily if the ring size is a multiple 

of three. 
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