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Abstract. Duality occurs in pairs of polyhedra, for example between the
icosahedron and the dodecahedron, between the cube and the octahedron, and
self-dually in the tetrahedron. In this paper, the principle of duality is general-
ized and linked to the construction of alternating knots. In a polyhedron, each
surface has at least three vertices and there are at least four surfaces. There is
always a dual polyhedron. From both, an alternating knot (or link) can be
constructed, one that has as many crossing points as the polyhedron has edges. It
turns out that this result also applies to bodies whose surfaces have less than
three vertices and which consist of less than four faces. The resulting bodies can
not be assembled like polyhedra from flat faces. In the following, they will be
referred to as “polyliner”. If each facet has at least two vertices, an alternating
knot can be constructed as before. If facets with only one point are present in the
polyliner, the construction of the associated knot at this point results in a loop
that can be unknotted. If the disentangling is not done, but the crossing point is
maintained, then the resulting spatial curves can be cataloged according to their
topology.

Keywords: Duality - Polyhedron * Polyliner - Dual graph - Medial graph
Kernel + Hull - Bundle - Knot - Link - Unknot

1 Duality

Introduction The described relationships are a classic result of knot theory, where
they are represented in a two-dimensional manner, using the terms graph, medial graph,
and reciprocal graph. Equivalent representations are given at the end of this article
(paragraph 3.3, Fig. 15). The paper is not based on these two-dimensional represen-
tations but proceeding from another embodiment of duality: the platonic solids.
Focusing on the three-dimensional representatives, the principle of duality is found to
rule a wide range of bodies. As solid interpretations of spherical graphs, here they are

introduced as “polyliner”.

Furthermore, in the spacial inspection the medial graph appears as a discontinuous
element during a continuous process of transformation (of a graph in its dual) and is
complemented by a second form of mediation, which is here introduced as “bundle”.

© Springer International Publishing AG, part of Springer Nature 2019

L. Cocchiarella (Ed.), ICGG 2018—Proceedings of the 18th International

Conference on Geometry and Graphics, Advances in Intelligent Systems

and Computing 809, pp. 484-499, 2019. https://doi.org/10.1007/978-3-319-95588-9_40


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95588-9_40&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95588-9_40&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95588-9_40&amp;domain=pdf

Duality in Non-polyhedral Bodies Part I: Polyliner 485

1.1 Duality in Form

The Platonic bodies occur in pairs: Each two belong together and complement each
other, as seen in the number of components in the solids: The icosahedron has 12
vertices and 20 faces, and its dual partner, the dodecahedron, has 12 faces and 20
vertices. However, the spectrum of bodies that can be dualized goes far beyond the
regular polyhedra. In the first place, in addition to the Platonic bodies, all irregular
polyhedra are dualizable.

Duality extends into the details of the polyhedral construction, the roles of face and
vertex are reversed in a specific way: the trigonal faces of the octahedron are repre-
sented in the cube as three-fold vertices, and the tetragonal faces of the cube in the
four-fold vertices of the octahedron, where four faces meet. The number of edges
remains the same, but a line that connects two points becomes a line that separates two
faces and vice versa (Table 1).

Table 1. Topological relationship of faces, vertices and edges in dual polyhedra

Polyhedron A Polyhedron B

n faces n vertices

m vertices m faces vertex types p, g, I ... face typese, f, g ...
face types p, q, T ... edge x separates faces edges y connects vertices

vertex types e, f, g ...
edge x connects vertices
edge y separates faces

The fact that every polyhedron has exactly one dual partner is not a metric property
but a topological one. In the following, what will be decisive is the number and relative
position of faces, edges and vertices.

Examples: Pentahedra It is possible to differentiate between two pentahedra (five-
sided polyhedra). One, the “trigonal prism” (Fig. 1), gathers three tetragons around two
trigons, and the other one, the “tetragonal pyramid”, surrounds one tetragon by 4
trigons.

The 6 vertices of the trigonal prism—all threefold—are translated in the dual
partner into 6 triangular faces. Together they form the “trigonal dipyramid”. The 5
vertices of the tetragonal pyramid—of which 1 is fourfold, 4 threefold—are translated
into 5 faces in the dual partner—1 tetragonal, 4 trigonal. Together they form a
tetragonal pyramid, which is upside down from the original.

All pyramids are “self-dual” in this upside down way; other polyhedra show
self-duality in different orientation (Fig. 2 column 4, 5).

Hexahedra—Chirality in Polyhedra Respectively, hexahedra with five to eight
vertices correspond to penta-, hexa- hepta- and octahedra (Fig. 2).

In the group of hexahedra the phenomenon of chirality in polyhedra occurs,
meaning, that two bodies can be identified by a mirror operation. To name the order of
the group of hexahedra—the number of its members—a decision has to be made.
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Fig. 1. Tetrahedron and pentahedra with dual partner. From bottom to top: face types of B; face
types of A; polyhedron B; corresponding polyhedron A
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Fig. 2. Hexahedra. From bottom to top: number of faces A/B; properties, types of faces B, types

of faces A, polyhedron B with 6 vertices, polyhedron A with 6 faces

Based on the idea that mirror-like polyhedra are as good as identical, one can count the
two chiral hexahedra in Fig. 2 as one and the same, so that the overall count comes to

seven hexahedra.

1.2 Synthesis

Truncation Dual partners can be translated into each other, by truncating their ver-
tices. On the one hand, this process can be seen as continuous, in that the cutting
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surfaces, which blunt the corners more and more, move continuously towards the
center of the body. On the other hand, this process contains a discontinuous moment.
Exactly at its mid-point a special shape is created, which in terms of the number of its
vertices and type of its faces is simpler than all the others—the kernel of the dual pair
(Figs. 3 and 4).

Fig. 3. Intersection—mid-point of transformation process. Left: cube and octahedron in a
relative size so that all their edges meet in pairs; right: kernel—their shared volume: the
cubeoctahedron

Fig. 4. Transformation circle of truncation and epicuration between cube and octahedron.
Clockwise: cube, truncated cube, cubeoctahedron (kernel); truncated octahedron, octahedron,
epicurated octahedron, thombic dodecahedron (hull) and epicurated cube

Intersection From a more harmonious viewpoint truncated forms result from an
intersection. Starting with both partners gathered around a common centre point and
changing gradually their relative size, in the volume they share transition forms are
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created: when edges of A and B meet in pairs in one point then the kernel occurs; if one
body is smaller then truncation forms are created, and when its vertices lie in the
partners surface the intersections common shape equals the smaller initial body.

1.3 Duality in Transformation Process

Not only forms, processes are also dualizable. Truncation corresponds to “epicuration”.
Table 2 compares the topological changes happening (1) at the beginning of the pro-
cesses, when the initial body A (or B) ceases, and (2) in the mid-point of the process,
when the simpler forms, so called “kernel” and “hull” of A and B are created.

Table 2. Topological changes during truncation and epicuration process

(1) Changes at the moment of leaving the initial form

To the truncated form To the epicurated form

Old vertices split up, new faces are created Old faces split up, new vertices are created
“within” them within them

They are separated from old faces by new They are connected to old vertices by new
edges, which intersect with old edges in new | edges, which, together with old edges, bound
vertices new faces

All vertices are of three-fold type All faces are triangular

(2) Changes in the mid-point of the process, at the moment of leaving

The truncated form to the kernel The epicurated form to the hull
Vertices meet each other in pairs at the same place Faces melt in pairs

All old edges disappear All old edges disappear

All vertices become four-fold All faces become tetragonal

Transformation Circles Bringing epicuration and truncation together, duality appears
as opposites in a circle—not only between the initial bodies A and B. All opposite
bodies in the transformation circle are dual partners: truncated A is dual to epicurated
B, kernel is dual to hull.

Kernel and hull are clearly assigned to one dual pair; while an outer transition form
can be part of several transition circles. (Compare Fig. 14: Transformation Circles of
Polyliner: There are equal epicuration forms in the first and in the third duoliner-pair, as
well as in the third and the fifth triliner-pair.)

2 Further Structures Corresponding to Dual Pairs

The four-foldness of elements in the kernel and in the hull allows for further
transformation.
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2.1 Folding Down the Hull into Bundles

Constructive Reality When dealing with physical models, questions about stability
and flexibility arise. The jump from the face’s three-foldness to four-foldness causes a
fundamental change in the constructive properties of the model. Made of flexible
framework, all phases of epicuration are stable structures—it is only models of the hulls
(in the mid-point of the process) that are flexible. They can be collapsed and routed to
two different end positions in a regular way (Fig. 5).

Fig. 5. Top: folding down the hull. Hull in centre, bundles left and right; 1st row: cube—the
hull of tetrahedron and tetrahedron; 2nd row: rhombic dodecahedron—the hull of cube and
octahedron; third row: hull of “triangular dipole and triangular cushion”; 4th row: hull of
“duogonal dipole and dougonal cushion” (for row 3, 4 compare paragraph 3.1: polyliner with
duogon)

Bundle as Connection of Centre Point and Peripheral Points These structures,
realizing a rhythm between inside and outside, we call “bundles” of the dual pair. One
of the bundles connects the centre point with all former vertices of A, the other one
connects the centre point with all former vertices of B by a number of lines corre-
sponding to the vertex’s order.
Bundles result from continuing the intersection process as described in paragraph 1.2:
Changing gradually the relative size of A and B-after A’s vertices lay in B’s surface
(Fig. 6, row 3 and 7), further shrinking of A does not change the shape of the shared
volume. But the “epicuration-form” (blue)—as a connection of nearest vertices of A
and of B—is again transformed, now situated within the volume of B, possibly turning
into a non-convex body (Fig. 6, left column, row 2 and 8). During further shrinking
this is topologically the same body as the convex epicuration form. When eventually A
disappears in a point, the “epicuration form” turns into a bundle (Fig. 6, left column,
row 1 and 9) (Table 3).
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Fig. 6. Left: changing relative size of A and B (example: trigonal cushion and dipole, compare
paragraph 3.1): left: both initial bodies A, B and kernel, right: the larger initial body and hull
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Table 3. Development during further transformation from kernel to knot/link and from hull to
bundle

Changes in the transformation from kernel to | Changes in the transformation from hull to

knot bundle

In each of all four-fold vertices “opposite” In each of all tetragons opposite points are
aspects are identified identified

The vertex splits up and two degenerated The facet splits up and two degenerated
“two-fold” vertices are created “duogonal” facets are created
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Fig. 7. Translation of dual pairs of polyhedra into alternating knots/links. From bottom to top:
number of faces/vertices; face types of the polyhedron A; face types of the dual polyhedron B;
polyhedron A (left: tetrahedron, right: trigonal prism); polyhedron B (left: tetrahedron, right:
trigonal dipyramid); intersection A and B; intersection and core form; corresponding knot/link
(left: the Borromean rings)
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2.2 From the Kernel to Knots and Links

Again, the step from kernel to knot has an effect on the constructive properties of a
model: It allows for an elegant and simple building method. From a polyhedron whose
vertices are all four-fold (relating to a medial graph—compare paragraph 3.3) an edge
model can be easily build by guiding a wire without cutting it (Figs. 7 and 8).

A I 2 JES R
4 & K & wh® K

Fig. 8. Hexahedra, their knots/links and bundles (from left to right in the same order as in
Fig. 2). Top: brass models with both chiral variants; middle: clay models with one chiral variant;
bottom: drawings of the bundles

All surface disappears. Edges are interpreted as strands. Vertices split and gain a
new function as crossing points, where the strand passes, altering once outside, once
inside, creating an alternating knot or link.

Again a rhythm between inside and outside is opened up by the former edges: here
swinging, as the track of a moving point in the knot, there flashing rapidly in the bundle
between expansion and contraction.

The two knots are much more similar in appearance than the two bundles: they
differ only in their handedness. (A self-dual polyhedron includes an amphichiral knot).
Furthermore, a knot is clearly assigned to a dual pair, while a single bundle can
correspond to several pairs (compare Fig. 13 column 5/6 and 7/8). Therefore, the knot
may count as the central form of synthesis within a dual pair.
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3 Simplest Cases of Dual Pairs, Knots, Links and Bundles

Simplest Knots The simplest pair of polyhedra—the tetrahedron and its dual tetra-
hedron—corresponds to the “Borromean Rings”, a link of three strands. The Bor-
romean rings form 6 crossing points corresponding to the 6 edges of the Tetrahedron
(Fig. 7). But that is not the simplest alternating knot! The tables show: There are knots
and links with two, three, four and five crossing points (Fig. 9).

B OHE AL

Fig. 9. Simplest knots—knots and links with 2-5 crossing-points

The incompleteness of the series of alternating knots and links, as they emerge from the
synthesis of polyhedral pairs, suggests applying the principle of duality and the process
of transformation to bodies with possibly less than four faces (Fig. 10).

* 0 A 000

Fig. 10. Generalized polygons. From left to right: monogon; duogon; trigon; tetragon;
pentagon; hexagon

Polyliner Polyliner are bodies, whose surface is structured by facets, edges and ver-
tices just as polyhedra. But polyliner’s elements are generalized: faces and edges may
be curved. In the following curved faces are referred to as facets, while we stay with the
terms “vertex” and “edge”. Concerning the principle of duality and the processes of
transformation, polyliner can be treated as generalized polyhedra.

3.1 Polyliner with Duogon

Curvature allows for introducing duogonal facets and from these compounding bodies
with less than four facets. The corresponding element to a duogonal facet is a twofold
vertex, wherefrom only two edges part and where-in only two facets meet. By introducing
duogons, a corresponding dual pair of polyliner is found even for the simplest knots.

Examples: Duo- and Triliner The first newly created body with duogonal facets is a
“beechnut” shape, enclosing volume between three facets, which meet in two threefold
vertices (Fig. 11, right column, 5th row). Its dual partner spans two trigons between
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Fig. 11. Mono- duo- and triliner. From bottom to top: bundles; shell form; intersection A; B and
shell form; number of facets A and B; facet types B; facet types A; polyliner B (monogonal,
duogonal and trigonal cushion); polyliner A (one-fold, two-fold and three-fold dipole); intersection
A and B; intersection and kernel; kernel; corresponding knot/link/spatial line with loop (centre:
Hopf-Link, right trefoil knot)—(for left column see paragraph 3.2: polyliner with monogon)
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three two-fold vertices, like a “triangonal cushion”. Again, the transformation process
delivers a corresponding knot, known as the “Threefoil Knot”.

One step further in reduction, two duogons meeting in two two-fold vertices
resemble a “pod”-like, self-dual body corresponding to the “Hopf-Link”. With these
two dual pairs, the knot and link with two and three crossing points are found.

Groups of Finite and Infinite Order—Counting Edges There is an infinite number
of polyliner, either unfolding n duogons between 2 vertices (“dipoles”) or composing 2
facets of n-gonal, cushion-like curved shape (“cushions”). Polyliner allow themselves
to be classified into groups of finite order, where the number of edges is decisive.
Therefore we suggest the term “polyliner” and sort the following templates by the
number of polyliner’s edges.

Tight Bending in Tetraliner and Pentaliner—Unknotting without Monogon
Curvature of edges and facets was the key for the creation of polyliner. Extreme
curvature allows a polygon to encircle the body’s volume by identifying some of its
points or edges with each other. If a tetragon is bent so tightly that two opposite vertices
meet, then a tetraliner can be compounded, which gathers two dougons with the
tetragon and is self-dual (Fig. 12, 3rd column). For delivering polyliner-pairs for all the
variants in the knot table, we need tightly bent facets on board.

In the group of pentaliner tight bending happens—point to point in a pentagon
(Fig. 12, 7th column)—and further, there is a hexagon with two of its edges identified
(8th column). (In general edges of two facets are identified with each other, here it is
edges of one and the same facet.) Corresponding is a speciality in the link: by twisting
its two halves, the centre crossing point can be untangled: the link partly unknots.

3.2 Polyliner with Monogon

The newly acquired freedom to allow curved surfaces and curved edges as structuring
elements suggests that even polyliner with “monogons”—facets with one point—may
conform with the principle of duality. Monogons are bounded by only one edge, which
returns to itself at a single point (Fig. 10). The corresponding situation in the dual
partner is a vertex, wherefrom only one edge emerges and wherein a single facet meets
itself—a so called one-fold vertex.

Examples: Monoliner The simplest body with monogon has a single edge, two
monogonal facets and a two-fold vertex, resembling a “seed”-like form. It is a member
of the cushion family. Its dual—the most simple dipole—has two one-fold vertices and
one duogonal facet. In its single edge the two edges of its tightly bent duogon come
together, resembling a “purse”-like form (Fig. 11, left column).

Regular Polyliner In a regular polyhedron all faces are equal in type and all vertices
are equal in type. All cushions and dipoles conform with this restriction, but only the
one- two- and three-fold variants can also—like regular polyhedra—result from an
even distribution of points on the spherical surface, and therefore may count as regular
polyliner.
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Fig. 12. Tetra- and pentaliner—polyliner with duogon, without monogon. From bottom to top:
bundles; hull; number of facets A and B; facet types B; facet types A; polyliner B; polyliner A

3.3 Loops—Unknotting with Monogon

The situations of one-fold vertices and monogons correspond to a situation in a knot,
where the strand is loosely twisted over itself. This apparent crossing, which can be
easily undone (by Reidemeister Movement 1), is referred to as “loops”. In the simplest
case—the described monoliner-pair—there is only one such loop at all, and in terms of
relative positional relationship such a topological structure would initially be regarded
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Fig. 13. Polyliner with monogon and duogon—monoliner, duoliner and triliner. From bottom to
top: bundles; hull; number of facets A, B; facet types of polyliner B; facet types of its dual A;
body B; body A; intersection A and B; intersection and kernel; corresponding knot/link/spatial

line with loop

as a simple, unknotted ring. The spatial curve of the pair of triliner in Fig. 13, column
9, partly unknots into the Hopf-Link. However, if the loops are considered to persist
with the strand’s crossing point, then, due to the dual pair assignments, spatial line with
loops can be catalogued and groups of finite order established (Figs. 13 and 14).
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Fig. 14. Transformation circles of polyliner. 1st row: monoliner and duoliner; 2nd and 3rd row:
triliner. Each clockwise: A; truncated A; kernel; truncated B; B; epicurated B; hull, epicurated A

3.4 Graphic Representation

In graph theory, the dual graph B of a plane graph A is a graph that has a vertex for each
face of A. The outside of the graph counts as a face too. (This is the facet, through
which the spatial net is projected.) The dual graph has an edge whenever two faces of
A are separated from each other by an edge, and a self-loop when the same face appears
on both sides of an edge. Thus, each edge of A has a corresponding dual edge in B and
both have a crossing point.

The medial graph (corresponding to the kernel) is usually created from one of the
initial graphs as another graph that represents the adjacencies between edges in the
faces of A. Figure 15 results from a more harmonious viewpoint, starting from both
graphs A and B—the dual pair. To gain the medial graph, all crossing points from the
interlaced A and B are connected within each face.
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Fig. 15. Planar representation of the mono- and duoliner—all possible projections. From top to
bottom: graph A; dual graph B; interlaced A and B; A, B and medial graph; medial graph
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