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Abstract. In a triplet group, there is a close relationship between three bodies, which in 
some respects is comparable to the relationship between two bodies in a dual pair. In both 
groups - dual pair and triplet - the bodies are completely equivalent to each other. Both 
or all three can serve as the starting point for the formation of the partner(s), whereby the 
same formation rule is applied. The phenomenon of triplets leads to connections between 
shapes and groups of shapes in a new, precise sense. The discovery of triplets is based on 
the introduction of polyliner, which result on the one hand from interpreting spherical 
graphs as solid bodies, and on the other hand from a generalization of polyhedra. Based 
on the application of the Conway transformations of polyhedron geometry to polyliner, 
the article introduces triplets: a group of three solids whose truncation and pyramid (Con-
way kis operator) forms are topologically identical. Furthermore, the edge set of the com-
mon truncation, resp., pyramid form is the disjoint union of the edge sets of the triplet. 

Keywords: polyliner, spherical graph, Conway transformation, kis, core, dual, ambo, 
needle, zip, truncation, triplet 

Fig. 1.  Corresponding forms of a polyliner triplet. 

Polyliner 

In the article "Duality in non-polyhedral solids Part I: Polyliner" (ICGG Milano 2018), 
a new group of geometric solids was introduced. Polyliner arise from the generalization 
of polyhedra by allowing curved edges and faces as well as degree-2 vertices, order-2 
faces (bigons), degree-1 vertices and order-1 faces (monogons) to structure their sur-
face. For the structuring components of the polyliner, which could also be called "fa-
cettes, peaks and ridges", due to their possible curvature, the designations "face, vertex 
and edge" have been retained. 
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Fig. 2. Three dual pairs of geometric solids with curved edges and convex surfaces. From top to 
bottom: polyliner A; polyliner B (dual); notation for the generalized polygons shown. From left 
to right: monoliner, duoliner, triliner. 

 
Representation of the polyliner - shorthand and notation. In the drawings in this 
article, polyliner are shown in a greatly reduced form. The lines of the shorthand used 
depict only the edges of the bodies. Contours of the bodies, where they are part of 
curved surfaces and not edges of the body, are not shown, in order to avoid misinter-
pretation of lines. They must be added mentally to enclose the volume.  
   Polyliner figures can be difficult to interpret for this reason, since parts of an edge 
may lie on the front surface of the polyliner and the rest may lie on the back surface.  For 
this reason, edges on the back are drawn more delicately, those on the front more 
strongly. In order to reproduce the spatial orientation of the faces in a legible manner, 
the monogons in particular are often represented in a slightly distorted form. 
 
The curvature of their components gives the polyliner an extended range of freedom 
for their form - in addition to measured edge lengths and face angles, the sharpness and 
path of their curving can be chosen. The topological type of the solid remains deter-
mined by the type and number of its faces, vertices and edges, as well as their relative 
position to each other.  
   Below each drawing appears notation for the polygons contained in it, in the interests 
of clear identification of the polyliner in question.  

The transformation of polyliners into their pyramid form 

As with every polyhedron, the principle of duality also assigns a dual partner to every 
polyliner, in which the roles of vertices and faces are reversed. Furthermore, the Con-
way transformations of polyhedron geometry can also be applied to polyliner. In par-
ticular, this article uses the operation ‘kis’ – pyramid formation on the faces, which we 
now describe. 
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Fig. 3. Corresponding triplets. On the left the three contents, on the right their carrier, in the 
second row the duals of the first row; the middle of the three contents is self-dual. Below: trun-
cation triplet; above: pyramid triplet. The first three polyliner on the top row have the same py-
ramid shape. 

   To create the pyramid shape, each face of an "original polyliner" is replaced by a 
pyramid. A new vertex is inserted above each face of the polyliner and connected to 
each vertex of the face on which it is based. If the face of the original polyliner has four 
vertices, a pyramid is formed from four triangles. If the face of the original polyliner is 
order-2, a pyramid is formed from two (curved) triangles. The newly inserted vertex 
therefore always has the degree of the order of the face of the original polyliner on 
which it is based.  
   The pyramid shape is a polyliner with new, exclusively triangular faces. It does not 
contain any faces from the original polyliner. In addition to the additional "new" edges 
of the pyramids, the "old" edges of the original polyliner are also included. This means 
that the number of edges of the pyramid shape is three times that of its original poly-
liner. The vertices of the original polyliner are also contained in the pyramid shape, but 
each now has doubled degree. The "old vertices" are therefore always of even degree. 
The newly inserted vertices, which form the tips of the pyramids, have the degree of 
the faces on which they are based. 

Decomposition of the pyramid shapes of polyliner with even-order faces 

If all faces of the original polyliner are even-order, all new vertices in the pyramid shape 
are also even-degree. In these cases, it is possible to swap the roles of the old and new 
vertices in the pyramid shape. To do this, starting at any vertex, every second edge 
meeting at this vertex is chosen. Proceed in the same way at each vertex encountered 
in this process. A 2-fold vertex forms a dead end and an end point of the edge sub-
network. In this way, a continuous set of edges is extracted; some vertices of the pyra-
mid shape are left out.  
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Re-starting the process at a remaining edge leads to a second edge set, leaving out 
other vertices. In total, the edges of the pyramid shape are divided into three sets. To 
each edge set we associate the group of vertices not included in its edges. This makes 
it possible to complete each of the edge sets to a genuine polyliner. We complete the 
edge set by adding a face corresponding to each of the vertices left out of the given 
edge set. The position and numbering of these extra vertices indicates the type and po-
sition of the faces to be introduced.   

Triplets of the Polyliner  

The resulting group of three polyliner is called a "triplet". Note that each of the three 
can serve as a starting point for forming the same pyramid shape. Since the three poly-
liner, at least according to their vertices and edges, are contained in the pyramid shape, 
we call each one a "content of the triplet" and their common pyramid shape the "carrier 
of the triplet".  

 
The phenomenon of triplets is apparently not described in the literature. It seems that 
the introduction of the polyliner was the necessary basis for its discovery.  

From the point of view of polyhedron geometry, from which the polyliner appear as 
a generalization, it is not possible to find triplets: Although polyhedra can be the carrier 
and content of triplets, no triplet can consist exclusively of polyhedra (see section: Re-
lations among vertex and face counts of triplet contents). 

From the perspective of graph theory, the formation of dual and medial graphs from 
spherical graphs is familiar. (In their solid interpretation as polyliner, these correspond 
to the dual partner (Conway's "dual") and the core form (Conway's "ambo")). However, 
those spherical graphs which represent the pyramid forms - as well as their dual part-
ners, the truncation forms - do not yet seem to have received any attention in their 
triplet-forming properties.  

Emergence of truncation forms from the interlacing of dual polyliner 

   In polyhedron geometry, the Conway operations "ambo" and "truncation" can be de-
fined as the cutting off or truncation of vertices. In polyliner geometry, the curvature of 
the newly created faces must also be taken into account so that all resulting core shapes 
and truncation shapes are solids enclosing volumes. Here it is appropriate to assume the 
interlacing of both initial bodies, so that the cutting/truncating tool on a polyliner is its 
own dual partner.  

Different relative sizes of the two dual partners lead to three different forms.  

Core and hull. If both solids are aligned in such a way that edges touch each other in 
pairs, the core shape of A and B (Conway's "ambo") is formed by intersecting their 
surfaces, yielding the intersection of their volumes (fig.4, center column). The "hull of 
A and B" (Conway's "join") is formed using the same relative sizes by connecting each 
vertex of one body with the vertices of the dual face. 
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Fig. 4. Interweaving of dual partners in three size ratios. On each row, from left to right: polyliner 
A; interweaving of A larger than B with truncation form of B; interweaving of A and B in bal-
anced size ratios with core of A and B; interweaving of A smaller than B with truncation form of 
A; polyliner B. From top to bottom: 3 dual pairs of tetraliner. Note: the truncation forms of B are 
topologically identical (second column).  

All edges of the shapes core and hull are new edges, created as intersecting lines be-
tween faces or as connecting lines between vertices. This means that the core and hull 
each have twice as many edges as their original polyliner. Core and hull shapes are 
always clearly associated with a dual pair of original shapes.  

Truncation shapes and pyramid shapes. If the size ratios of the two original solids 
are changed, the edges lose their contact points and, if A is smaller than B, the trunca-
tion shape of polyliner A (Conway's "zip") is formed as the intersection of the volume 
and, if B is smaller than A, the truncation shape of polyliner B (Conway's "needle") is 
formed. Truncation shapes combine edges that are newly created as intersecting lines 
between the faces of A and B with pieces of edges that were already part of the edges 
of an original body. This means that the number of edges of the truncation shapes is 
three times that of their original bodies.  

Corresponding triplets 
According to the principle of duality, triplets always occur in pairs. The dual partners 
of the contents of the first triplet are the contents of the second (dual) triplet. And in 
order to obtain the carrier of the second triplet, truncation – the dual operation to form-
ing the pyramid form – is applied to the dual contents. 
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Fig. 5. Triplets type a,b,c. From left to right: contents of the pyramid triplet (polyliner 
a; b; c); carrier of the pyramid triplet; contents of the truncation triplet (dual partner of 
a; b; c); truncation triplet carrier; interlacing of the three truncation triplet contents (in 
the right hand margin). From top to bottom: triplets of tetraliner, pentaliner.   

Prerequisites for the occurrence of triplets. The occurrence of triplets depends on 
certain properties of the original polyliner: Polyliner that consist exclusively of even-
order faces are always the content of a pyramid triplet, and polyliner that contain only 
even-degree vertices are always the content of a truncation triplet.  

Relationships between content and carrier in pyramid triplets and truncation tri-
plets. The way in which the two groups of three meet - the content of the pyramid triplet 
versus the content of the truncation triplet - is different in many respects. The two start-
ing positions, consisting of dualized original forms and dualized operations to generate 
their triplet carrier, lead to a dualized structure of relations. 
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Fig. 6. Triplets type a,b,a. From top to bottom: triplets of duoliner, triliner, tetraliner. 
From left to right as in Fig. 5. 
 

The carrier of the truncation triplet is obviously smaller than its contents, but the 
carrier of the pyramid triplet is larger than its contents. The edges of all three contents 
are contained in their full length in the pyramid triplet carrier, but a piece has been cut 
off in the truncation triplet carrier. This is why the pyramid triplet was initially easier 
to decipher than the truncation triplet. 
 
The dual function of the edge. The apparent inequality of the two situations is decep-
tive, however. This is because edges have a dual function, simultaneously connecting 
vertices and separating faces. 
  In the pyramid triplet, the length of the edge - as a connection between two vertices - 
is identical in the carrier and the content, but the dihedral angle at this edge is flatter 
(that is, smaller) in the carrier than in the content. In the truncation triplet, the dihedral 
angle between the two faces adjacent to the edge is identical in the carrier and the con-
tent, but the length of the edge is shorter in the carrier than in the content. 
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Decomposition of a truncation triplet carrier into its three contents 
The edges of the truncation triplet carrier can also be decomposed. To do this, every 
second of the edges surrounding it is extracted, starting at any face (fig.3, second row). 
The same procedure is carried out on each face to which the initially extracted edges 
are attached. In this way, a set of edges is obtained. The edges do not share any common 
vertices, but they do share common faces. However, some of the faces of the carrier are 
not reached. To complete the edge set for the polyliner, the vertices and the parts of the 
edges adjacent to them must be added. They lie outside the carrier, as is to be expected 
after they have been cut off during the truncation operation.  

Three Types of Triplets 

A systematic analysis of all polyliner with even-degree vertices and even-order faces 
shows that three types of triplets exist: "self-triadic triplets", which contain three iden-
tical polyliner (type a,a,a) (Fig. 8); triplets with three different contents (type a,b,c) 
(Fig.5), and triplets with two identical and one different content (type a,b,a) (Fig.6).  

The rarest of these are the triplets type (a,a,a). Only polyliner with edge counts of 
the form (3n-2) - i.e. mono-, tetra-, heptaliner and so on. - can be the content of triplets 
of type (a,a,a). In addition, a certain ratio between the number and count of their vertices 
and faces must be maintained. 

Relations among vertex and face counts of triplet contents. In the pyramid triplet, 
there are n-degree vertices of a partner content above the 2n-order faces of a content. In 
the truncation triplet, there are n-order faces of partner content under the 2n-degree 
vertices of a content. This means that contents of self-triadic pyramids combine triplets 
k 2n-order faces between 2k n-degree vertices, and contents of self-triadic truncation 
triplets combine 2k n-order faces between k 2n-degree vertices. 
    The relation among the counts of the vertices and faces of the contents of a triplet 
also prevents the creation of triplets whose contents are all polyhedra. Polyhedra can 
only be part of triplets in combination with polyliner contents.  

Fig. 7. Dodecaliner and octahedron as contents of a truncation triplet. The carrier is 
the truncated octahedron (right).  
 
    Octahedron and cube also appear as triplet carriers - see tetraliner triplet Fig. 8. 
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Fig. 8. Triplets type a,a,a. From top to bottom: Triplets of monoliner, tetraliner. From 
left to right as in Fig. 5. 
 
 
 

Forms of interlacing the three contents  
If the missing parts of the original solids are added to the triplet carrier - in the case of 
the truncation triplet, vertices and their adjacent edge length outside the carrier, in the 
case of the pyramid triplet, faces and their adjacent dihedral angles inside the carrier - 
two types of interweaving figures are created. Both figures interweave three solids 
equally, but in different ways: In the pyramid triplet, the bodies of the contents are 
stitched together at vertices on the outside; in the structure of the truncation triplet, the 
faces of the original bodies coincide inside the interlocking figure and form the carrier 
as a stable core.  

Triplet and dual pair 
Summarized in this way, the equivalence of the three partners in the truncation triplet 
is particularly clear. Their mutual interlacing, the evenly distributed points of contact 
between the edges of the different contents, the alternation in the bulging out and re-
ceding of volume components are reminiscent in their appearance of the interlacing of 
two bodies of a dual pair. The similarities and differences between dual pairs and tri-
plets are summarized below.  
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Fig. 9. Interweaving figures of the 6 corresponding contents. From left to right: group of three 
of the pyramid triplet; group of three of the truncation triplet; the same 6 solids in the three in-
terweaving figures of the dual pairs. 
 
 
Similarities between triplet and dual pair 
- The partners play equivalent roles in every respect. 
- Each partner in a group has the same number of edges. 
- Joint interlocking is possible for the two bodies of the dual pair as well as for the 
three bodies of the truncation triplet, so that each edge of a body touches an edge of 
the partner(s). In the interlocking figures, vertices and adjacent volume sections pro-
trude in alternating star shapes. 
- Interlocking is the basis for the formation of core and hull shapes. 

 
Differences between triplet and dual pair 
- A dual pair consists of two equivalent bodies, while the triplet consists of three.  
- Each polyliner has a dual partner. - Triplets arise only from polyliner that fulfill certain 
requirements. 
- In the intersection of the dual pair, edges meet in pairs at one vertex. There is a contact 
point on each edge. - In the interweaving of the truncation triplet, three edges meet at 
one point. There are two contact points on each edge.  
- A polyliner can be dual to itself (self-dual). Self-duality can occur in polyliner with 
an even number of edges. - There are three different types of triplets, depending on the 
repetition of their contents: those in which all partners are the same; those in which all 
partners are different; and those in which there is a third next to two identical ones. 
Polyliner with a 3n-2 number of edges can be content of a self-triadic triplet.  
 
 

Cores and hulls of the triplet interlocks  

The interlacing of three polyliner in the truncation triplet and the similarity of their 
appearance to the dual pair suggest the formation of core and hull forms of the inter-
locking of three polyliner. In fact, the carrier of the truncation triplet already contains 
its core, and the carrier of the pyramid triplet already contains its hull.  

The hull of the truncation triplet can be easily formed by connecting the vertices of 
the three contents. The resulting shape corresponds to the dual partner of the core, i.e. 
the carrier of the corresponding pyramid triplet. Less obvious is the formation of the 
core in the intersection of the three pyramid triplet contents.  
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Fig. 10.   2 /3 Triplets. Top left: three contents of the pyramid triplet; below: each two of the 
pyramid contents generate the dual partner of the third, missing content as the core shape of their 
intersection; top right: three contents of the truncation triplet; below: each two of the truncation 
contents generate the dual partner of the third, missing content as the hull shape of their intersec-
tion.  
 
2/3 Triplets. In order to determine the intersecting lines of their faces in a clearer situ-
ation, it makes sense to first look at two of the three contents in isolation. Three 
pairs from each triplet are possible: (a,b), (b,c), (c,a). When looking at their core and 
hull forms, the first thing that stands out is the strong cohesion across the carrier: The 
identity of the carrier as the core form of the truncation triplet or as the hull form of the 
pyramid triplet is retained in every case, even if only two of the three contents are in-
terlocked. However, the hull forms of two truncation triplet contents and the cores of 
two pyramid triplet contents change: Two contents of the truncation triplet form the 
dual partner of the third content as a hull - by joining their vertices. And two contents 
of a pyramid triplet form the dual partner of the third content as a core shape - in the 
common volume of their surfaces. As a consequence, in the interlacing of all three con-
tents of the pyramid triplet there can be found an interlacing of the three truncation 
triplet contents and finally, as the core of the whole, the carrier of the truncation tri-
plet. The interweaving of the three pyramid triplet contents and the interweaving of the 
three truncation triplet contents therefore have the same core and the same hull.  

Fig. 11.  Dual pair transformation circle. Three dual pairs of tetraliner in Conway transformation. 
Clockwise, starting left: polyliner A; truncation of A; core of A and B; truncation of B; polyliner 
B; pyramid form of B; hull of A and B; pyramid form of A. 



12  Eva Wohlleben 

 

Fig. 12. Triplet circle. Outside: 6 corresponding tetraliner; inside: 2/3 interlacing of the two 
neighbors in the circle. The contents of the pyramid triplet (top right, bottom right, center left) 
generate the contents of the truncation triplet in their 2/3 intersections as a core. The contents of 
the truncation triplet (top left, bottom left, center right) generate the contents of the pyramid 
triplet as a hull via their 2/3 intersections.  

Dual pair transformation circle and triplet circle 

The circular arrangement of the eight bodies arising from Conway transfor-
mation. The arrangement of the eight solids in the "dual pair transformation circle" 
places dual bodies opposite each other (fig.11). The basic structure of the dual-pair 
transformation circle corresponds to two semicircles. On the horizontal dividing line 
are the original shapes, in the upper semicircle the core shapes of their interlacing with 
different size ratios, in the lower semicircle their hull shapes. This arrangement also 
illustrates the fact that continuous transformation processes between the individual bod-
ies transform a polyliner into its dual partner - and back again.  
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The dual pair transformation circle contains three types of shapes that differ in their 
number of edges. Half of the shapes can also occur in other dual-pair transformation 
circles, provided they have only even-order faces and/or only even-degree vertices. 
 
The circular arrangement of the six contents of corresponding triplets. The circular 
arrangement of the six original bodies in corresponding triplets is suggested by the dif-
ferentiated relationship structure of the core and hull forms of 2/3 triplets.  

In the "triplet circle" there are three dual pairs facing each other. All three pairs are 
of equal value. The basic structure of the arrangement corresponds to two interweaving 
triangles, the triangle of truncation-triplet contents and the triangle of pyramid-triplet 
contents. Each body can be obtained from the 2/3 interlocking of its two direct neigh-
bors. Polyliner that consist exclusively of even-order faces and also have only even-
degree vertices occur in two triplet circles (e.g. tetraliner in Fig. 6 and 8). 

Conclusion 
The structure of the six original forms in corresponding triplets is characterized by the 
equivalence of the bodies and spans a field of reciprocity. Similar to a dual pair, the 
interplay of the bodies in the triplet leads to the creation of synthetic forms, in particular 
cores and hulls. There is thus a triadic relationship of balance and complementation that 
reaches into the foundations of spatial structure.  

Thanks to 

My thanks to Charles Gunn for the translation into English. 
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